The DCB Dose Difference: A Comparison of Drug in Tissue of Different .018 DCBs

Andrew Holden MBCHB, FRANZCR, EBIR, ONZM
Director of Interventional Radiology
Auckland Hospital, Auckland, New Zealand
Disclosures: Dr. Andrew Holden

- Dr. Holden is a Medical Advisory Board Member for Medtronic, Boston Scientific, and Gore
- Dr. Holden is a Clinical Investigator for Medtronic, Boston Scientific, Gore, Abbott, Cagent, Endologix, Intact Vascular, Shockwave, Bard, Cook, Endospan, Intervene, Spectranetics, TriReme, Merit, Reflow, Terumo, Surmodics
- No other relevant disclosures
Background

• Peripheral vascular interventions (including angioplasty, atherectomy, and stenting) may restore luminal flow; however, they also incite local injury.

• Vascular wall injury initiates inflammatory, migratory, proliferative and extracellular matrix deposition processes which can lead to neointimal hyperplasia and restenosis.

Biology of Restenosis Cascade in Arteries

Inflammation, Granulation & Extracellular Matrix Formation
Anti-restenotic Drugs in Endovascular Intervention

- Although there is clear evidence of improved patency using anti-restenotic drugs combined with angioplasty balloons and stents1,2, much remains unknown about mechanism of action.
- Effects of anti-restenotic drug dose, coatings, and excipient choices to optimally prevent restenosis should be further evaluated.

Mechanisms of Action

Conventional Knowledge

Paclitaxel (Cytotoxic)
Interferes with cell division

Cytotoxic drugs halt cell division, inducing apoptosis

Rapid transfer (via excipient) allows acute delivery, especially beneficial if no artificial reservoir is present

Limus (Cytostatic)
Interferes with cell growth

Cytostatic drugs hold a cell in G_0 phase, arresting growth

Prolonged elution (via polymeric 'reservoir') allows sustained delivery, especially beneficial when stent is present

DCB

Coronary DES
Mechanisms of Action
Additional Effects of Paclitaxel

- Paclitaxel inhibits microtubule function and is cytotoxic if it acts on the cell during mitosis = apoptosis\(^1,2\)
- However, only 10% of cells are dividing at any point in time
- In the remaining surviving cells, microtubules are involved in:\(^1,2,3\)
 - Cell Motility & Migration
 - Protein Transport
 - **Protein Secretion/Extracellular Matrix (ECM)**
 - Angiogenesis

Vessel Response to Stent Injury

Paclitaxel Modulates Healing

Uninhibited Healing
- Secretory SMCs + ECM layers are thick
- Healthy contractile SMCs

Paclitaxel Modulated Healing
- Secretory SMCs + ECM layers are thin
- Healthy contractile SMCs

Non-coated Balloon

DCB
Factors for Successful Revascularization

- Acute lumen gain with restoration of normal flow
- Durable result by combating the restenosis cascade (drug elution)
- Modulate the healing response – facilitate smooth muscle cells to produce mature competent tissue
- Mature competent tissue will prevent recurrence of atherosclerosis
Drug Elution to Achieve Mature Competent Tissue

1. **Right drug** (lipophilic, fast diffusion and tissue uptake, broad mechanism of action)
2. **Right amount of drug** (dose)
3. **Effective drug transfer** (balloon, coating, and excipient)
4. **Right drug formulation** (crystalline drug reservoirs, amorphous dissolvable)
5. **Right duration of drug in the vessel** to modulate the healing response

How can we confirm drug efficacy?
In-stent Restenosis (ISR) Porcine Model Study

Purpose: To compare suppression of ISR between two 0.018” Drug-coated Balloons (DCB): the IN.PACT Pacific DCB and the Ranger DCB

Model: Yucatan mini swine model of ISR

Device Specifications:

<table>
<thead>
<tr>
<th></th>
<th>Ranger DCB</th>
<th>IN.PACT Pacific DCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug</td>
<td>Paclitaxel</td>
<td>Paclitaxel</td>
</tr>
<tr>
<td>Dose</td>
<td>2µg/mm²</td>
<td>3.5µg/mm²</td>
</tr>
<tr>
<td>Excipient</td>
<td>Citrate Ester</td>
<td>Urea</td>
</tr>
<tr>
<td>Uncoated PTA</td>
<td>Sterling PTA</td>
<td>Pacific Extreme</td>
</tr>
<tr>
<td>Balloon Platform</td>
<td>0.018”</td>
<td>0.018”</td>
</tr>
</tbody>
</table>
In-stent Restenosis (ISR) Porcine Model Study

Purpose: To compare suppression of ISR between two 0.018” Drug-coated Balloons (DCB): the IN.PACT Pacific DCB and the Ranger DCB

Model: Yucatan mini swine model of ISR

Device Specifications:

<table>
<thead>
<tr>
<th>Drug</th>
<th>Ranger DCB</th>
<th>IN.PACT Pacific DCB</th>
<th>IN.PACT Admiral DCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>2µg/mm²</td>
<td>3.5µg/mm²</td>
<td>3.5µg/mm²</td>
</tr>
<tr>
<td>Excipient</td>
<td>Citrate Ester</td>
<td>Urea</td>
<td>Urea</td>
</tr>
<tr>
<td>Uncoated PTA</td>
<td>Sterling PTA</td>
<td>Pacific Extreme</td>
<td>Admiral Extreme</td>
</tr>
<tr>
<td>Balloon Platform</td>
<td>0.018”</td>
<td>0.018”</td>
<td>0.035”</td>
</tr>
</tbody>
</table>
ISR Porcine Model Study: Methodology & Analysis

Methodology

Create ISR model in swine peripheral vasculature by injuring the target artery with angioplasty followed by a stent implantation

Day 0 (after 28 days maturation): Treat the stented sites with DCB; Perform angiographic imaging

Day 90 (IPP/Ranger): Perform interim angiographic imaging; Measure suppression of restenosis as compared to Day 0

Day 120 (IPP/Ranger): Perform terminal angiographic imaging; Measure suppression of restenosis as compared to Day 0; Obtain sample tissues for drug content analysis

Restenosis Analysis

Determine % Reduction of Restenosis as compared to baseline (Day 0)

\[
\text{% Reduction of Restenosis = } \frac{\text{Day 0 Restenosis} - \text{Day x Restenosis}}{\text{Day 0 Restenosis}} \times 100
\]

Medtronic data on file
Outcomes: In-stent Restenosis Through 120 days

% Reduction of Restenosis

90 days

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Reduction</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranger DCB 90 days</td>
<td>-1.4%</td>
<td>8</td>
</tr>
<tr>
<td>IN.PACT Pacific DCB</td>
<td>13.0%</td>
<td>8</td>
</tr>
</tbody>
</table>

120 days

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Reduction</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ranger DCB 120 days</td>
<td>-3.2%</td>
<td>10</td>
</tr>
<tr>
<td>IN.PACT Pacific DCB</td>
<td>8.1%</td>
<td>10</td>
</tr>
</tbody>
</table>

Reduces ISR

Failure to Reduce ISR
Outcomes: In-stent Restenosis Through 120 days

Mean Reduction of In-stent Re-Stenosis

90 days
- Ranger DCB: n=8
- IN.PACT Pacific DCB: n=8

120 days
- Ranger DCB: n=10
- IN.PACT Pacific DCB: n=10

% Reduction of Restenosis

- Ranger DCB: -1.4%
- IN.PACT Pacific DCB: 13.0%
- Ranger DCB: -3.2%
- IN.PACT Pacific DCB: 8.1%

Drug in Tissue

- Ranger DCB: 14,351 ng (n=5)
- IN.PACT Pacific DCB: 3,535 ng (n=5)
Summary

- The IN.PACT DCB platform offers a unique formulation (drug/dose/excipient) that effectively inhibits in-stent restenosis through 120 days in an animal model as compared to the Ranger DCB
 - IN.PACT DCB demonstrated an 8.1% reduction of ISR through 120 days
 - Ranger DCB demonstrated a 3.2% increase of ISR through 120 days
- This study demonstrates the mechanisms behind DCB drug formulation (including input dose) driving long term effectiveness
- Also explains the superior long-term patient outcomes seen in IN.PACT DCB studies
- Further study of inhibitory/healing mechanisms are needed and each DCB must be considered on its own merit
Acknowledgments

• Dr Juan Granada, Executive Director and Chief Scientific Officer
 CRF-Skirball Center for Cardiovascular Research
 Columbia University Medical Center, New York

• Dr Bob Melder, Senior R&D Director, Medtronic Cardiovascular Medtronic
The DCB Dose Difference: A Comparison of Drug in Tissue of Different .018 DCBs

Andrew Holden MBCHB, FRANZCR, EBIR, ONZM
Director of Interventional Radiology
Auckland Hospital, Auckland, New Zealand