High risk of restenosis patients’ treatment:
Update in the REFLOW trial

Koen Deloose, MD
Head Dept Vascular Surgery
AZ Sint Blasius, Dendermonde, Belgium
Disclosure slide

Speaker name: Koen Deloose, MD

☒ I have the following potential conflicts of interest to report:

☒ Consulting: Abbott, BD, Biotronik, Boston Scientific, Cook, CTI vascular, iVascular, Medtronic, Philips, Terumo, CyndRX, Profusa

☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☒ I do not have any potential conflict of interest
Recommendations

While further investigation is in progress, the FAMHP takes this safety signal very seriously and makes the following recommendations (ER - NL) to healthcare professionals:

- **Do not use paclitaxel DCBs or DESs as a preferred treatment for intermittent claudication until further notice.** Carefully estimate the risks and benefits for each patient.
- **Discuss the risks and benefits of all available treatment options for PAV with patients.** Inform patients about the uncertainty of increased mortality.
- **Ensure proper follow-up** for patients who have already been treated with a paclitaxel DCB or DES.
- **Report any adverse event** involving a paclitaxel DCB or DES to FAMHP using our online adverse event form.

Patients who are worried or have any questions about these aids should talk to their attending physician.

Federal Agency for Medicines and Health Product,
July 3rd 2019
How to continue...?
“3 questions/answers” - based treatment algorithm

Severe Calcium

Angioplasty Responder

- Focal non-responding Ca
 - SUPERA
- Diffuse non-responding Ca
 - AHERECTOMY + SUPERA

High Risk Restenosis

- Angioplasty responder
 - PAVE & CRACK BYPASS
 - DCB
 - DES
 - BMS with correct COF
“3 questions/answers” - based treatment algorithm

Angioplasty Responder

- **Severe Calcium**
 - **High Risk Restenosis**
 - **Angioplasty responder**
 - **Y**
 - **DCB**
 - **N**
 - **DES**
 - **BMS with correct COF**

- **Focal non-responding Ca**
 - **SUPERA**

- **Diffuse non-responding Ca**
 - **ATHERECTOMY + SUPERA**

- **PAVE & CRACK BYPASS**
High Risk of Restenosis?

<table>
<thead>
<tr>
<th>Patient Specific Factors</th>
<th>Lesion Specific Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Limb Ischemia</td>
<td>Length</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>Small vessel diameter</td>
</tr>
<tr>
<td>End Stage Renal Disease</td>
<td>Occlusion</td>
</tr>
<tr>
<td>Poor Run-off</td>
<td></td>
</tr>
</tbody>
</table>

A study investigating the Efficacy of the LEGFLOW Paclitaxel-Eluting for the treatment of long femoropopliteal lesions (TASC C&D)

- **Study Objective:**
 To evaluate the performance of LEGFLOW Paclitaxel-Eluting Peripheral balloon catheter for treatment of long femoropopliteal lesions (TASC C&D) in 120 patients.

- **Primary Endpoint:**
 Primary Patency @12 months, defined as absence of hemodynamically significant stenosis on DUS (peak systolic velocity ratio ≤2.4) @target lesion & without reintervention.
We need a stable coating matrix...

<table>
<thead>
<tr>
<th></th>
<th>OLDER GENERATION CRYSTALLINE COATINGS</th>
<th>NEWER GENERATION AMORPHOUS COATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Surface covered with white powder</td>
<td>Smooth, transparent surface</td>
</tr>
<tr>
<td>Optical image measuring (100x)</td>
<td>Crystalline, hydrophilic coating</td>
<td>Amorphous, lipophilic coating</td>
</tr>
<tr>
<td>Look</td>
<td>Crystalline sugar</td>
<td>Honey</td>
</tr>
<tr>
<td>Matrix</td>
<td>Rigid crystal shape of crystalline excipient/PTX</td>
<td>Non crystalline PTX melted with polymeric excipient in an elastic matrix</td>
</tr>
<tr>
<td>Mechanical stress response</td>
<td>Rigid crystalline coating affected by mechanical stress factors</td>
<td>Elastic, polymeric amorphous coating not affected by mechanical stress</td>
</tr>
</tbody>
</table>
Reflow study : participating centers/timeline

BELGIUM
- M. Bosiers, K. Deloose, J. Callaert
 AZ Sint-Blasius, Dendermonde
- P. Peeters, J. Verbist, W. Van den Eynde
 Imelda Hospital, Bonheiden
- L. Maene, R. Beelen - *OLV, Aalst*
- K. Keirse - *RZ Heilig Hart, Tienen*
- J. Hendriks, P. Lauwers
 University Hospital Antwerp, Edegem

GERMANY
- G. Torsello – *St. Franziskus-Hospital Münster*
- D. Scheinert – *Universitätsklinikum Leipzig*
Reflow study: patient demographics and procedural characteristics

<table>
<thead>
<tr>
<th>N = 120</th>
<th>Procedure time (min-max)</th>
</tr>
</thead>
</table>
| Male (%)
65.80% (79/120) | 52.17 (19-165) minutes |
| Age (min – max) | Scopy time (min – max) |
71.06 (35.05 – 93.16) years | 7.32 (1.7 – 39.24) minutes |

*missing information for 2 patients

<table>
<thead>
<tr>
<th>N = 120</th>
<th>Contrast (min – max)</th>
<th>Cross-over (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotine abuse (%)</td>
<td>88.09 (9 – 195) mL</td>
<td>83.33% (100/120)</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>Procedure time (min-max)</td>
<td>78.33%</td>
</tr>
</tbody>
</table>
77.50% (93/120) | Scopy time (min – max) |
| Diabetes mellitus (%) | *missing information for 2 patients | 83.33% (100/120) |
30.00% (36/120) | Contrast (min – max) |
| Renal insufficiency (%) | 88.09 (9 – 195) mL | 83.33% (100/120) |
15.00% (18/120) | Procedure time (min-max) |
| Hypercholesterolemia (%) | Scopy time (min – max) |
53.30% (64/120) | *missing information for 2 patients |
| Obesity (%) | Contrast (min – max) |
19.20% (23/120) | 88.09 (9 – 195) mL |
Rutherford Classification

Claudicants
77.5% (95/120)

Renal insufficiency
15.00% (18/120)

Hypercholesterolemia
53.30% (64/120)

Obesity
19.20% (23/120)

Nicotine abuse
56.67% (68/120)

Hypertension
77.50% (93/120)

Diabetes mellitus
30.00% (36/120)

Male
65.80% (79/120)

Age
71.06 (35.05 – 93.16) years

Contrast
88.09 (9 – 195) mL

Cross-over
83.33% (100/120)

Inflow Lesion
10.83% (13/120)

Outflow lesion
21.67% (26/120)
Reflow study: Lesion characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 120</td>
<td></td>
</tr>
<tr>
<td>Lesion length (min – max)</td>
<td>216.08 (150 – 390) mm</td>
</tr>
<tr>
<td>Ref Vessel Diameter (min – max)</td>
<td>5.40 (4.05 – 6.00) mm</td>
</tr>
<tr>
<td>Pre-dilatation</td>
<td>64.20% (77/120)</td>
</tr>
<tr>
<td>1 DCB (%)</td>
<td>25.83% (31/120)</td>
</tr>
<tr>
<td>2 DCB’s (%)</td>
<td>57.50% (69/120)</td>
</tr>
<tr>
<td>3 DCB’s (%)</td>
<td>16.67% (20/120)</td>
</tr>
<tr>
<td>Post-dilatation (%)</td>
<td>22.50% (27/120)</td>
</tr>
<tr>
<td>Bail-out stenting (%)</td>
<td>35.00% (42/120)</td>
</tr>
<tr>
<td>Occlusion (%)</td>
<td>45.00% (54/120)</td>
</tr>
<tr>
<td>Calcified lesion (%)</td>
<td>67.50% (81/120)</td>
</tr>
</tbody>
</table>
Reflow study: Primary Patency @12/24 m

Very Challenging Lesions!

<table>
<thead>
<tr>
<th>Lesion length (min – max)</th>
<th>216.08 (150 – 390) mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occlusion (%)</td>
<td>45.00% (54/120)</td>
</tr>
<tr>
<td>Calcified lesion (%)</td>
<td>67.50% (81/120)</td>
</tr>
</tbody>
</table>
Reflow study: Freedom TLR @12/24 m

Freedom from Target Lesion Revascularization

79.90% (120 pts)

72.50% (prelim 70 pts)
Reflow study: Survival @12/24 m

Reasons of death:
- Hypoglycemic coma (Day 146)
- Atrial fibrillation, acute renal insufficiency, critical stenosis aortic valve (Day 163)
- Pneumonia leading to respiratory arrest (Day 301)
- Hypernatriemia, acute renal insufficiency (Day 318)
- Urethral Cancer (Day 318)
- Reason unknown (Day 335)
- Cerebral hypoxemia (Day 417)
- Reason unknown (Day 464)
- Brain stem infarction (Day 484)
- Admission for hip fracture after fall, died 2 days later (Day 615)

All included patients could be categorized as "patients at high risk for restenosis"
Reflow study: clinical outcome

![Evolution Rutherford Classification Graph]

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>1MFU</th>
<th>6MFU</th>
<th>12MFU</th>
<th>24MFU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutherford 5</td>
<td>14</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Rutherford 4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Rutherford 3</td>
<td>49</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Rutherford 2</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Rutherford 1</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Rutherford 0</td>
<td>0</td>
<td>60</td>
<td>40</td>
<td>47</td>
<td>40</td>
</tr>
</tbody>
</table>
Reflow study : safety profile (full cohort)

<table>
<thead>
<tr>
<th>Primary Safety Endpoint (120 pts)</th>
<th>30 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device or procedure related death (N)</td>
<td>0</td>
</tr>
<tr>
<td>CD-TLR (N)</td>
<td>1</td>
</tr>
<tr>
<td>Target Limb Amputation (N)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAEs (N=120 pts)</th>
<th>180d</th>
<th>210d</th>
<th>365d</th>
<th>395d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death (N)</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CD-TLR (N)</td>
<td>11</td>
<td>12</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Target Limb Major Amputation (N)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reflow study in perspective...lesions >20cm

12M Primary Patency (%)
- BMS: 64.8%
- DES: 74.5%
- bypass: 72.5%
- DCB: 71.1%

12M Freedom from TLR (%)
- BMS: 68.2%
- DES: 80.4%
- bypass: 76.2%
- DCB: 79.9%

24M Primary Patency (%)
- Preliminary cohort 70/120
 - BMS: N/A
 - DES: 62.0%
 - bypass: 59.9%
 - DCB: 66.2%

24M Freedom from TLR (%)
- Preliminary cohort 70/120
 - BMS: N/A
 - DES: 72.9%
 - bypass: 67.9%
 - DCB: 72.5%

BMS: Durability 200 study
DES: ZILVERPASS Zilver PTX results
Bypass ZILVERPASS results
DCB: REFLOW results
Reflow study in summary

• Safety issues with some DCB’s created official authority statements, saying that all PTX-based technology needs to be reserved for patients at high risk for restenosis & reintervention

• Newer generation DCB’s, like the Legflow, with stable amorphous SAFEPAX coating, are developed to optimize drug uptake in “hostile environments”

• The Reflow study demonstrates in a complex lesion population (mean lesion length 22cm) good outcomes: full cohort 1 year patency of 71% and freedom from TLR of 80%.

• In a preliminary cohort of 70 patients 24 month data are available: patency of 66% and freedom from TLR of 72%

• If we benchmark with other treatment strategies like BMS, DES and (prosthetic) bypass surgery in these complex lesions @high risk, we can conclude these data are remarkable
High risk of restenosis patients’ treatment: Update in the REFLOW trial

Koen Deloose, MD
Head Dept Vascular Surgery
AZ Sint Blasius, Dendermonde, Belgium