GORE® VIABAHN® endoprosthesis in complex SFA lesions

M. Steinbauer, T. Betz, I. Töpel, C. Uhl

Department of Vascular Surgery, Vascular Centre Krankenhaus Barmherzige Brüder Regensburg
Disclosure

Speaker name:
Markus Steinbauer

I have the following potential conflicts of interest to report:

- [] Consulting
- [] Employment in industry
- [] Stockholder of a healthcare company
- [] Owner of a healthcare company
 - [x] Other(s): W.L. Gore

- [] I do not have any potential conflict of interest
The Evolution of Performance

The GORE® VIABAHN® Endoprosthesis is the leader among stent grafts. Decades of partnership with clinicians around the globe has resulted in unparalleled performance across multiple indications:

- Arteriovenous Access
- Superficial Femoral Artery
- In-stent Restenosis
- Iliac Artery
- Popliteal Artery Aneurysm

1996
Original GORE® HEMOGRAFT® Endoprosthesis introduced in Europe

2008
GORE® VIABAHN® Endoprosthesis with PROPAK® Bioactive Surface introduced in Europe

2003
TIPtoHUB deployment introduced on 4-8 mm devices

2009
Laser technology enables the new expanded edge at proximal end

9-13 mm devices introduced with 0.035” guidewire compatibility

2010
35 cm length: Longest stent-graft introduced in EUROPE

2011
GORE® VIABAHN® Endoprosthesis with PROPAK® Bioactive Surface 5-8 mm devices decreased in profile by one French size

2014
Receives CT mark for the treatment of symptomatic VHOCs

2016
Radiopaque markers introduced on 5-8 mm devices in Europe
Viabahn: Indications
PAA – Complex Iliac lesions

Results of hybrid procedures for treatment of aortoiliac Trans-Atlantic Inter-Society Consensus II D lesions with self-expanding covered heparin-bonded stent grafts.

Uhl C¹, Betz T², Weiss B², Töpel J², Steinbauer M².
Indications POD
Complex SFA / popliteal lesions

pAVK IIb:
- Following conservative treatment (e.g. after CFA-TEA)

pAVK III/IV (CLI)
- Bail-out after PTA/DEB/Stent
- Additional alternative to stenting and bypassing
- Stenoses / occlusions in patients unfit for surgery
Indications POD Bypass - Viabahn

Comparison of Long-term Outcomes of Heparin Bonded Polytetrafluoroethylene and Autologous Vein Below Knee Femoropopliteal Bypasses in Patients with Critical Limb Ischaemia

C. Uhl, C. Grosch, C. Hock, I. Töpel, M. Steinbauer
Department of Vascular Surgery, Barmherzige Brüder Regensburg, Regensburg, Germany

Eur J Vasc Endovasc Surg (2017) 54, 203–211

Comparison of Long-term Outcomes of Heparin Bonded Polytetrafluoroethylene and Autologous Vein Below Knee Femoropopliteal Bypasses in Patients with Critical Limb Ischaemia

C. Uhl, C. Grosch, C. Hock, I. Töpel, M. Steinbauer
Department of Vascular Surgery, Barmherzige Brüder Regensburg, Regensburg, Germany

N=151
N=270
N=108

Tibial and peroneal bypasses in octogenarians and nonoctogenarians with critical limb ischemia

Christian Uhl, MD,* Carolin Hock, MD,† Isabelle Ayx, MD,‡ Niels Zorger, MD,§ Markus Steinbauer, MD, and Ingolf Töpel, MD,¶ Regensburg, Germany

Background: Elderly patients with critical limb ischemia are increasingly treated through interventional therapy. The outcome of tibial and peroneal bypasses in octogenarians who were unsuitable for endovascular therapy remains unclear.

Methods: We conducted a retrospective analysis of all patients who underwent tibial or peroneal bypass surgery in our clinic between October 2007 and April 2015. In Group 1 we included all patients 80 years and older and in group 2 all patients under 80 years. Vein was used whenever possible (diameter not less than 3 mm, not more than two segments for sufficient length). Study end points were primary and secondary patency, limb salvage and survival after 3 years.

Results: Indications were rest pain in 32.2% and ulcer and gangrene in 67.8%. There were 92 cases in Group 1 (median age, 85 years) and 178 in group 2 (median age, 70 years). Risk factors and indications were similar in both groups except for gender, renal insufficiency and smoking. 30-day mortality was 9.7% in group 1 and 1.1% in group 2 (P = .001). There was no significant difference in 30-day graft failure and major amputation. At 3 years primary patency in group 1 was 88.9% vs 49.7% (P = .058), secondary patency was 73.5% vs 59.5% (P = .007). Limb salvage was 80.1% in group 1 vs 73.0% in group 2 (P = .446), survival was 44.0% vs 71.2% (P = .006).

Conclusions: Our analysis showed good results in octogenarians undergoing tibial and peroneal bypass surgery with regard to patency rates and limb salvage. However, octogenarians had a significantly higher perioperative mortality rate. (J Vasc Surg 2016;63:1555–62.)
pAVK IIb
Subintimal recanalization (out-back)

- pAVK II b rechts, SFA occlusion
- previous TEA/Patch right CFA
- 3 month excercise

Procedure:
- Puncture (8 F sheeth)
- Recanalization
- Viabahn (V3.18) 6 mm x 25 cm + 6 x 10 cm
pAVK IIb
Subintimal recanalization (out-back)
Viastar

<table>
<thead>
<tr>
<th>Patient Demographics</th>
<th>GORE® VIABAHN® Endoprosthesis</th>
<th>Bare Metal Stent</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Age</td>
<td>69</td>
<td>69</td>
<td>0.69</td>
</tr>
<tr>
<td>Male</td>
<td>67%</td>
<td>75%</td>
<td>0.34</td>
</tr>
<tr>
<td>Smoker</td>
<td>69%</td>
<td>70%</td>
<td>0.87</td>
</tr>
<tr>
<td>Hypertension</td>
<td>83%</td>
<td>84%</td>
<td>0.91</td>
</tr>
<tr>
<td>Diabetes</td>
<td>35%</td>
<td>36%</td>
<td>0.99</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>68%</td>
<td>68%</td>
<td>0.86</td>
</tr>
<tr>
<td>Rutherford Category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18%</td>
<td>17%</td>
<td>0.72</td>
</tr>
<tr>
<td>3</td>
<td>68%</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>Baseline ABI</td>
<td>0.58</td>
<td>0.58</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Only 14 % vs 19 % CLI patients
Lesion characteristics similar across treatment groups.

<table>
<thead>
<tr>
<th>Lesion Characteristics</th>
<th>GORE® VIABAHN® Endoprostesis</th>
<th>Bare Metal Stent</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Chronic Occlusions</td>
<td>79%</td>
<td>70%</td>
<td>0.21</td>
</tr>
<tr>
<td>Mean Lesion Length (mm)</td>
<td>190</td>
<td>173</td>
<td>0.13</td>
</tr>
<tr>
<td>TASC Classification</td>
<td></td>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td>TASC II A</td>
<td>0%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>TASC II B</td>
<td>28%</td>
<td>42%</td>
<td></td>
</tr>
<tr>
<td>TASC II C</td>
<td>25%</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>TASC II D</td>
<td>47%</td>
<td>32%</td>
<td></td>
</tr>
</tbody>
</table>

TASC C and D: Only 72 % vs 55 %
Viastar: 2 Year Results
Primary Patency, Intent-to-treat Analysis

P < 0.05

Viastar: 2 Year Results
Primary Patency, Intent-to-treat Analysis
Lesions > 20 cm

Lession length: 19.0 cm vs. 17.3 cm

Viabahn:

Barmherzige Brüder Regensburg 2010-2018

- 125 Patients with Viabahn
 - 32 PAA
 - 20 Aorto-Iliac
 - 11 Viabahn <25 cm

- 62 Patients included in retrospective study
 (prospective data assessment)

Median lesion length 25 cm (22.0 – 41.3 cm)

Table 1. Patient characteristics, risk factors and indications.

<table>
<thead>
<tr>
<th>Condition</th>
<th>n</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median)</td>
<td>70.5</td>
<td>(52–94)</td>
</tr>
<tr>
<td>Men</td>
<td>45</td>
<td>(72.6%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>25</td>
<td>(40.3%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>35</td>
<td>(56.5%)</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>15</td>
<td>(24.2%)</td>
</tr>
<tr>
<td>Coronary artery bypass</td>
<td>6</td>
<td>(9.7%)</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>18</td>
<td>(29.0%)</td>
</tr>
<tr>
<td>Dialysis</td>
<td>2</td>
<td>(3.2%)</td>
</tr>
<tr>
<td>Hyperlipidaemia</td>
<td>30</td>
<td>(48.4%)</td>
</tr>
<tr>
<td>Smoker</td>
<td>21</td>
<td>(33.9%)</td>
</tr>
<tr>
<td>Claudication</td>
<td>38</td>
<td>(61.3%)</td>
</tr>
<tr>
<td>Critical limb ischemia</td>
<td>24</td>
<td>(38.7%)</td>
</tr>
<tr>
<td>3 vessel run-off</td>
<td>27</td>
<td>(43.6%)</td>
</tr>
<tr>
<td>2 vessel run-off</td>
<td>19</td>
<td>(30.6%)</td>
</tr>
<tr>
<td>1 vessel run-off</td>
<td>16</td>
<td>(25.8%)</td>
</tr>
</tbody>
</table>

CLI 38.7 %
Viabahn:

Barmherzige Brüder Regensburg 2010-2018

Median lesion length 25 cm (22.0 – 41.3 cm)

Table 2. Procedure and stent graft details.

<table>
<thead>
<tr>
<th>Procedure and stent graft details</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stentgraft n = 1</td>
<td>37 (59.7%)</td>
</tr>
<tr>
<td>Stentgraft n > 1</td>
<td>25 (40.3%)</td>
</tr>
<tr>
<td>Distal end of the stentgraft</td>
<td></td>
</tr>
<tr>
<td>above femoral condyles</td>
<td>39 (62.9%)</td>
</tr>
<tr>
<td>below femoral condyles</td>
<td>23 (37.1%)</td>
</tr>
<tr>
<td>Cut down</td>
<td>13 (20.9%)</td>
</tr>
<tr>
<td>Percutaneus</td>
<td>49 (79.1%)</td>
</tr>
<tr>
<td>Occlusions</td>
<td>85.5%</td>
</tr>
<tr>
<td>Subintimal recanalization</td>
<td>19.4%</td>
</tr>
</tbody>
</table>

More than 1 viabahn: 40.3%
Infragenual landing zone: 37.1%
Occlusions: 85.5%
Subintimal recanalization 19.4%

Real World Data:
More „Viabahn vs Bypass“ than „Viabahn vs Stent“
Postproedurales Procedere

- ASS 100 mg + Clopidogrel 75 mg for 6 month
- ASS 100 mg life long
- Duplex every 6 month
 - After successful treatment of viabahn occlusion
 - ASS 100 mg + Clopidogrel 75 mg life long
 - Eminence – No Evidence !!!!
20.9% general anesthesia, 79.1% local anesthesia,
7 x CFA TEA + viabahn (10.3%)

No local complications (infection, hematoma, pseudoaneurysm)
0% 30 Tage mortality (4 x ALI)

5 early occlusion (8.1%)
- 1x ALI patient with palliative colon carcinoma - major amputation
- 1 x conservative therapy
- 2 x successful lysis
- 1 x bypass (ALI)
Long-term results of the heparin-bonded Viabahn stent graft in femoropopliteal TASC C and D lesions with a covered stent length of minimum 25 cm

1 year *primary* patency: 61.1 %
5 year *primary* patency: 38.5 %

- More than 50 % of occluded viabahns could be treated successfully by lysis

1 year *secondary* patency: 83.0 %
5 year *secondary* patency: 52.4 %

- In case of critical ischemia: embolectomy or bypass
Long-term results of the heparin-bonded Viabahn stent graft in femoropopliteal TASC C and D lesions with a covered stent length of minimum 25 cm

pAVK II vs CLI (5 a)

- No difference concerning patency rates and limb salvage (independend of „Run off vessels“)

- Survival 82.3 vs. 46.7 % (independend risk factor: CAD)

Limb salvage
No differences:

• Lesion length – number of viabahns
 (independend risk factor: renal insufficiency)

• Suprarenal vs infrarenal
 – Patency rates and limb salvage
 (no difference concerning „Run off“)
 – Survival 82.5 % vs. 39.7 %

• Viabahn diameter: 5 mm vs > 5 mm
Comparison of Long-term Outcomes of Heparin Bonded Polytetrafluoroethylene and Autologous Vein Below Knee Femoropopliteal Bypasses in Patients with Critical Limb Ischaemia

C. Uhl, C. Grosch, C. Hock, I. Töpel, M. Steinbauer
Department of Vascular Surgery, Barmherzige Brüder Regensburg, Regensburg, Germany

Secundary patency

Limb salvage
Risk of Death Following Application of Paclitaxel-Coated Balloons and Stents in the Femoropopliteal Artery of the Leg: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Konstantinos Katsanos, MD, PhD, MSc, EBIR; Stavros Spiliopoulos, MD, PhD; Panagiotis Kitrou, MD, PhD; Miltiadis Krokidis, MD, PhD; Dimitrios Kamabatidis, MD, PhD

Background—Several randomized controlled trials (RCTs) have already shown that paclitaxel-coated balloons and stents significantly reduce the rates of vessel restenosis and target lesion revascularization after lower extremity interventions.

Methods and Results—A systematic review and meta-analysis of RCTs investigating paclitaxel-coated devices in the femoral and/or popliteal arteries was performed. The primary safety measure was all-cause patient death. Risk ratios and risk differences were pooled with a random effects model. In all, 28 RCTs with 4663 patients (89% intermittent claudication) were analyzed. All-cause patient death at 1 year (28 RCTs with 4432 cases) was similar between paclitaxel-coated devices and control arms (2.3% versus 2.3% crude risk of death; risk ratio, 1.08; 95% CI, 0.72–1.61). All-cause death at 2 years (12 RCTs with 2316 cases) was significantly increased in the case of paclitaxel versus control (7.2% versus 3.8% crude risk of death; risk ratio, 1.68; 95% CI, 1.15–2.47; number-needed-to-harm, 29 patients [95% CI, 19–59]). All-cause death up to 5 years (3 RCTs with 863 cases) increased further in the case of paclitaxel (14.7% versus 8.1% crude risk of death; risk ratio, 1.93; 95% CI, 1.27–2.93; number-needed-to-harm, 14 patients [95% CI, 9–32]). Meta-regression showed a significant relationship between exposure to paclitaxel (dose-time product) and absolute risk of death (0.4±0.1% excess risk of death per paclitaxel mg-year; P<0.001). Trial sequential analysis excluded false-positive findings with 99% certainty (2-sided α, 1.0%).

Conclusions—There is increased risk of death following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the lower limbs. Further investigations are urgently warranted.
RECOMMENDATIONS

Based on the FDA's review of available data and the Advisory Panel conclusions, we recommend that health care providers consider the following recommendations:

- Continue diligent monitoring of patients who have been treated with paclitaxel-coated balloons and paclitaxel-eluting stents.

- Discuss the risks and benefits of all available PAD treatment options with your patients. For many patients, alternative treatment options to paclitaxel-coated balloons and paclitaxel-eluting stents provide a more favorable benefit-risk profile based on currently available information.

- For individual patients judged to be at particularly high risk for restenosis and repeat femoropopliteal interventions, clinicians may determine that the benefits of using a paclitaxel-coated device outweigh the risk of late mortality.

- In discussing treatment options, physicians should explore their patients' expectations, concerns and treatment preferences.

➢ Viabahn is an valid alternative to DEB/DES in complex SFA / politeal lesions
Summary
Viabahn in complex SFA / popliteal lesions

- Real Word Data (lesion length, ALI, CLI, infragenual)
- Patency rates lower than in the viastar study
- Secondary patency (5a) acceptable/good
- Patency independent of Viabahn length and infragenual landing zone

- Vein bypass is gold standard (long term data)
- Comparable results to PTFE bypasses below the knee
- Endoluminal therapy feasible in patients “unfit for surgery”
- Open question: “double platelet therapy” for “how long“
Save The Dates

137. Deutscher Chirurgen Kongress
CityCube, Berlin
Thank you for your attention
Viabahn

Ultra dünnwandige ePTFE Prothese

Befestigungsfilm

Nitinol-Stent

“Contoured Proximal Edge”

PROPATEN Bioaktive Oberfläche

Längen: 2,5, 5, 10, 15 und 25 cm

Durchmesser: 5 – 13 mm
pAVK IV:
Patient nicht narkosefähig

- pAVK IV re, nicht narkosefähig:
- AFC-Stenose, serielle AFS-Stenose + A. Fibularis-Verschluß, Z.n. AFS Stent

Prozedur:
- Offene TEA/Patch AFC in LA
- Viabahn 5mm x 25 cm
- Rekanalisierung A. fibularis
pAVK IV
Viabahn + PTA
GORE® VIABAHN® endoprosthesis in complex SFA lesions

M. Steinbauer, T. Betz, I. Töpel, C. Uhl

Department of Vascular Surgery, Vascular Centre Krankenhaus Barmherzige Brüder Regensburg