DCBs for the Treatment of Symptomatic CVS in Dialysis Access. A European Multicenter Retrospective Study of 87 patients.

Panagiotis M. Kitrou MD, MSc, PhD, EBIR
Assistant Professor in Interventional Radiology
Patras University Hospital
Greece
Disclosure

This presentation is on behalf of Becton, Dickinson and Company. Any discussion regarding Becton, Dickinson and Company products during the presentation today is limited to information that is consistent with the Becton, Dickinson and Company labeling for those products. Please consult Becton, Dickinson and Company product labels and inserts for any indications, contraindications, hazards, warnings, cautions and instructions for use.

The opinions and clinical experiences presented herein are for informational purposes only. The results from this case report may not be predictive for all patients. Individual results may vary depending on a variety of patient specific attributes.

The physician has been compensated by Becton, Dickinson and Company to participate in this presentation.
Why do we get CVS in Dialysis?

Prior or Current use of foreign materials
Cardiac rhythm-related devices
PICC lines
Ports
Central Venous Catheters (specially left-sided - subclavian)
Stenosis of venous outflow due to Dialysis

Teruya TH et al.: Symptomatic subclavian vein stenosis and occlusion in hemodialysis patients with transvenous pacemakers.
Treatment
Facts & Figures
PTA first (Technical failure: 10-30%)
Patency Rates: 28.9% @ 6 months

High-Pressure Balloon PTA
Patency Rates: 60% @ 6 months
Main Problem → Elastic recoil

Stent Placement: More aggressive treatment
Patency: As low as 25% @ 1 year

Agarwal AK et al.: How should symptomatic central vein stenosis be managed in hemodialysis patients? Semin Dialysis 2014 May-Jun;27(3):278-81
Evidence so far..
Massmann et al. 2015

Retrospective analysis
Diabetic ESRD pts with AVFs
25 Restenotic Non-Occlusive Lesions treated with
 Elutax SV DCB: 20 times (10 pts)
 Plain Balloon Angioplasty: 32 times (15 pts)
Study included axillary veins
No vessel preparation
Outcome Measure: Freedom from target lesion revascularization
 Significant difference in favor of DCB
Kitrou et al. 2017

RCT including 40 subjects (20 in each group)

De novo, Restenotic & Occluded Lesions were included

Device under investigation: Lutonix DCB

Primary Endpoint: Clinically-assessed intervention-free period

Significant difference in favor of DCB
What is the evidence so far?

<30 pts!!!!
Purpose

This was a multi-center single-arm retrospective analysis evaluating the outcomes of DCB use for the treatment of symptomatic central venous stenosis in arteriovenous dialysis access.
Baseline Characteristics

Number of Patients: 87
Number of Physicians Involved: 17 physicians
Centers participating: 11

- Interventional Radiology Dpt, Patras University Hospital, Greece
- Schön Klinik, Düsseldorf, Germany
- Institut Mutualiste Montsouris, Paris, France
- 2nd Radiology Dpt, Attikon University Hospital, Athens, Greece
- Policlinico Umberto I, Rome, Italy
- Hospital "S. Eugenio" Rome, Italy
- Ambroise Paré University Hospital, Paris, France
- Lumiar Vascular Access Center, NephroCare, Portugal
- St. Franziskus Hospital, Muenster, Germany
- Center for Vascular and Endovascular Surgery, University Hospital of Muenster, Germany
- Barts Health, NHS Trust, London, UK
Inclusion Criteria
Age >18 years and <90 years
Patient on Dialysis with an ipsilateral Arteriovenous Fistula (AVF) or Graft (AVG)
Stenosed central vein (Subclavian Vein, Innominate Vein, Superior Vena Cava)
Clinical Signs of Central Venous Stenosis
- Arm swelling, pain, tenderness, and/or erythema of the ipsilateral extremity
- Ipsilateral breast swelling
- Neck swelling
- Visible collateral venous network
- Inadequate dialysis performance

Exclusion Criteria
Stenosis <50% verified with DSA by visual estimation
Dialysis Access thrombosis
Pregnancy
Infected vascular access
Clinically assessed intervention-free period of the treated segment at 6 months: A dialysis access circuit with no need for clinically driven target lesion repeat intervention for symptom recurrence and angiographic verification of the presence of CVS.

Procedure-related Minor & Major Complications
Results
In numbers

<table>
<thead>
<tr>
<th>Outcome Measures</th>
<th>@6 months</th>
<th>@12 months</th>
<th>@24 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLPP</td>
<td>62.7%</td>
<td>34.6%</td>
<td>23.3%</td>
</tr>
<tr>
<td>ACS</td>
<td>87.7%</td>
<td>78.5%</td>
<td>67.6%</td>
</tr>
<tr>
<td>PS</td>
<td>95%</td>
<td>91%</td>
<td>79.7%</td>
</tr>
</tbody>
</table>
Cox Regression Analysis

Hazard ratio

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hazard Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Age</td>
<td>0.99 (0.97 - 1.01)</td>
<td>0.319</td>
</tr>
<tr>
<td>Access Age</td>
<td>1.00 (0.88 - 1.14)</td>
<td>0.974</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.54 (0.26 - 1.11)</td>
<td>0.092</td>
</tr>
<tr>
<td>CAD</td>
<td>0.53 (0.29 - 1.10)</td>
<td>0.088</td>
</tr>
<tr>
<td>PAD</td>
<td>1.12 (0.55 - 2.26)</td>
<td>0.752</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>0.95 (0.47 - 1.91)</td>
<td>0.886</td>
</tr>
<tr>
<td>Aspirin</td>
<td>0.93 (0.47 - 1.82)</td>
<td>0.831</td>
</tr>
<tr>
<td>Heparin</td>
<td>0.99 (0.38 - 2.58)</td>
<td>0.991</td>
</tr>
<tr>
<td>Statins</td>
<td>0.92 (0.49 - 1.71)</td>
<td>0.789</td>
</tr>
<tr>
<td>Artery</td>
<td>0.42 (0.13 - 1.14)</td>
<td>0.09</td>
</tr>
<tr>
<td>Vein</td>
<td>0.93 (0.54 - 1.64)</td>
<td>0.705</td>
</tr>
<tr>
<td>ISR</td>
<td>0.48 (0.18 - 1.27)</td>
<td>0.138</td>
</tr>
<tr>
<td>Lines</td>
<td>0.69 (0.33 - 1.43)</td>
<td>0.321</td>
</tr>
<tr>
<td>Left side</td>
<td>0.49 (0.20 - 1.19)</td>
<td>0.114</td>
</tr>
<tr>
<td>Lesion</td>
<td>0.58 (0.27 - 1.23)</td>
<td>0.154</td>
</tr>
<tr>
<td>D</td>
<td>0.72 (0.57 - 0.91)</td>
<td>0.006</td>
</tr>
<tr>
<td>L</td>
<td>0.99 (0.97 - 1.01)</td>
<td>0.462</td>
</tr>
</tbody>
</table>

Events: 56; Global p-value (Log-Rank): 0.089564
AIC: 419.89; Concordance Index: 0.68
Diameter 8-12mm vs 5-7mm

Strata

Diameter.7=0
Diameter.7=1

\[p = 0.025 \]
Conclusion

In this European Multi-center Retrospective Analysis, DCBs used for the treatment of symptomatic CVS in Dialysis patients was safe.

Efficacy was consistent compared to previous RCTs.
DCBs for the Treatment of Symptomatic CVS in Dialysis Access. A European Multicenter Retrospective Study of 87 patients.

Panagiotis M. Kitrou MD, MSc, PhD, EBIR
Assistant Professor in Interventional Radiology
Patras University Hospital
Greece