High risk of restenosis patients’ treatment: Update in the REFLOW trial

Koen Deloose, MD
Head Dept Vascular Surgery
AZ Sint Blasius, Dendermonde, Belgium
Disclosure slide

Speaker name: Koen Deloose, MD

☐ I have the following potential conflicts of interest to report:

☒ Consulting: Abbott, BD, Biotronik, Boston Scientific, Cook, CTI vascular, iVascular, Medtronic, Philips, Terumo, CyndRX, Profusa

☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☐ I do not have any potential conflict of interest
Recommendations

While further investigation is in progress, the FAMHP takes this safety signal very seriously and makes the following recommendations (FR - NL) to healthcare professionals:

- **Do not use paclitaxel DCBs or DESs as a preferred treatment for intermittent claudication until further notice.** Carefully estimate the risks and benefits for each patient.
- **Discuss the risks and benefits of all available treatment options for PAV with patients.** Inform patients about the uncertainty of increased mortality.
- **Ensure proper follow-up** for patients who have already been treated with a paclitaxel DCB or DES.
- **Report any adverse event** involving a paclitaxel DCB or DES to FAMHP using our online adverse event form.

Patients who are worried or have any questions about these aids should talk to their attending physician.

Federal Agency for Medicines and Health Product, July 3rd 2019
How to continue...?
“3 questions/answers” - based treatment algorithm

Severe Calcium

Angioplasty Responder

High Risk Restenosis

Y

Focal non-responding Ca

SUPERA

Y

Y

ATHERECTOMY + SUPERA

Diffuse non-responding Ca

PAVE & CRACK BYPASS

N

Angioplasty responder

BMS with correct COF

DCB

DES

N

N
“3 questions/answers” - based treatment algorithm

Angioplasty Responder

- Y

- N

Severe Calcium

- N

High Risk Restenosis

Angioplasty Responder

- Y

- N

Focal non-responding Ca

SUPERA

Atherectomy + SUPERA

Diffuse non-responding Ca

PAVE & CRACK BYPASS

BMS with correct COF

DCB

DES

Y

N

Y

N

N
High Risk of Restenosis?

<table>
<thead>
<tr>
<th>Patient Specific Factors</th>
<th>Lesion Specific Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Limb Ischemia</td>
<td>Length</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>Small vessel diameter</td>
</tr>
<tr>
<td>End Stage Renal Disease</td>
<td>Occlusion</td>
</tr>
<tr>
<td>Poor Run-off</td>
<td></td>
</tr>
</tbody>
</table>

A study investigating the Efficacy of the LEGFLOW Paclitaxel-Eluting for the treatment of long femoropopliteal lesions (TASC C&D)

• **Study Objective:**
To evaluate the performance of LEGFLOW Paclitaxel-Eluting Peripheral balloon catheter for treatment of long femoropopliteal lesions (TASC C&D) in 120 patients.

• **Primary Endpoint:**
Primary Patency @12 months, defined as absence of hemodynamically significant stenosis on DUS (peak systolic velocity ratio ≤2.4) @target lesion & without reintervention.
We need a stable coating matrix...

<table>
<thead>
<tr>
<th></th>
<th>OLDER GENERATION CRYSTALLINE COATINGS</th>
<th>NEWER GENERATION AMORPHOUS COATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Surface covered with white powder</td>
<td>Smooth, transparent surface</td>
</tr>
<tr>
<td>Optical image</td>
<td>Crystalline, hydrophilic coating</td>
<td>Amorphous, lipophilic coating</td>
</tr>
<tr>
<td>measuring (100x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Look</td>
<td>Crystalline sugar</td>
<td>Honey</td>
</tr>
<tr>
<td>matrix</td>
<td>Rigid crystal shape of crystalline excipient/PTX</td>
<td>Non crystalline PTX melted with polymeric excipient in an elastic matrix</td>
</tr>
<tr>
<td>Mechanical stress</td>
<td>Rigid crystalline coating affected by mechanical stress factors</td>
<td>Elastic, polymeric amorphous coating not affected by mechanical stress</td>
</tr>
<tr>
<td>response</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reflow study: participating centers/timeline

BELGIUM
- M. Bosiers, K. Deloose, J. Callaert
 - *AZ Sint-Blasius, Dendermonde*
- P. Peeters, J. Verbist, W. Van den Eynde
 - *Imelda Hospital, Bonheiden*
- L. Maene, R. Beelen - *OLV, Aalst*
- K. Keirse - *RZ Heilig Hart, Tienen*
- J. Hendriks, P. Lauwers
 - *University Hospital Antwerp, Edegem*

GERMANY
- G. Torsello – *St. Franziskus-Hospital Münster*
- D. Scheinert – *Universitätsklinikum Leipzig*
Reflow study: patient demographics and procedural characteristics

N = 120

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
<th>Count (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (%), Male (%)</td>
<td>65.80%</td>
<td>79/120</td>
</tr>
<tr>
<td>Age (min – max), Age</td>
<td>71.06</td>
<td>35.05 – 93.16 years</td>
</tr>
<tr>
<td>Nicotine abuse (%), Nicotine abuse (%)</td>
<td>56.67%</td>
<td>68/120</td>
</tr>
<tr>
<td>Hypertension (%), Hypertension (%)</td>
<td>77.50%</td>
<td>93/120</td>
</tr>
<tr>
<td>Diabetes mellitus (%), Diabetes mellitus (%)</td>
<td>30.00%</td>
<td>36/120</td>
</tr>
<tr>
<td>Renal insufficiency (%), Renal insufficiency (%)</td>
<td>15.00%</td>
<td>18/120</td>
</tr>
<tr>
<td>Hypercholesterolemia (%), Hypercholesterolemia (%)</td>
<td>53.30%</td>
<td>64/120</td>
</tr>
<tr>
<td>Obesity (%), Obesity (%)</td>
<td>19.20%</td>
<td>23/120</td>
</tr>
<tr>
<td>Claudicants, Claudicants</td>
<td>77.5%</td>
<td>95/120</td>
</tr>
<tr>
<td>CLI, CLI</td>
<td>22.5%</td>
<td>27/120</td>
</tr>
</tbody>
</table>

N = 120

<table>
<thead>
<tr>
<th>Category</th>
<th>Time (min-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure time (min-max)</td>
<td>52.17 (19-165) minutes</td>
</tr>
<tr>
<td>Scopy time (min – max)</td>
<td>7.32 (1.7 – 39.24) minutes</td>
</tr>
<tr>
<td>*missing information for 2 patients</td>
<td></td>
</tr>
<tr>
<td>Contrast (min – max)</td>
<td>88.09 (9 – 195) mL</td>
</tr>
<tr>
<td>Cross-over (%)</td>
<td>83.33% (100/120)</td>
</tr>
<tr>
<td>Inflow Lesion (%)</td>
<td>10.83% (13/120)</td>
</tr>
<tr>
<td>Outflow lesion (%)</td>
<td>21.67% (26/120)</td>
</tr>
</tbody>
</table>

Rutherford Classification

- RF 2: 3 (0.25%)
- RF 3: 13 (1.08%)
- RF 4: 24 (2.0%)
- RF 5: 80 (6.67%)
Reflow study: Lesion characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N = 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion length (min – max)</td>
<td>216.08 (150 – 390) mm</td>
</tr>
<tr>
<td>Ref Vessel Diameter (min – max)</td>
<td>5.40 (4.05 – 6.00) mm</td>
</tr>
<tr>
<td>Pre-dilatation (%)</td>
<td>64.20% (77/120)</td>
</tr>
<tr>
<td>1 DCB (%)</td>
<td>25.83% (31/120)</td>
</tr>
<tr>
<td>2 DCB’s (%)</td>
<td>57.50% (69/120)</td>
</tr>
<tr>
<td>3 DCB’s (%)</td>
<td>16.67% (20/120)</td>
</tr>
<tr>
<td>Post-dilatation (%)</td>
<td>22.50% (27/120)</td>
</tr>
<tr>
<td>Bail-out stenting (%)</td>
<td>35.00% (42/120)</td>
</tr>
<tr>
<td>Occlusion (%)</td>
<td>45.00% (54/120)</td>
</tr>
<tr>
<td>Calcified lesion (%)</td>
<td>67.50% (81/120)</td>
</tr>
</tbody>
</table>
Reflow study: Primary Patency @12/24 m

Very Challenging Lesions!

- Lesion length (min–max): 216.08 (150–390) mm
- Occlusion (%): 45.00% (54/120)
- Calcified lesion (%): 67.50% (81/120)
Reflow study: Freedom TLR @12/24 m

Freedom from Target Lesion Revascularization

79.90% (120 pts)
72.50% (prelim 70 pts)

Number at risk:
70 70 68 68 66 63 60 58 58 56 52 50 49 48 46 45 44 43 43 41 40 38 12
Reflow study: Survival @12/24 m

Reasons of death:
- Hypoglycemic coma (Day 146)
- Atrial fibrillation, acute renal insufficiency, critical stenosis aortic valve (Day 163)
- Pneumonia leading to respiratory arrest (Day 301)
- Hypernatriemia, acute renal insufficiency (Day 318)
- Urethral Cancer (Day 318)
- Reason unknown (Day 335)
- Cerebral hypoxemia (Day 417)
- Reason unknown (Day 464)
- Brain stem infarction (Day 484)
- Admission for hip fracture after fall, died 2 days later (Day 615)

With mean lesion lengths of 216 mm, 45% CTO’s, 67.50% calcified lesions

All included patients could be categorized as “patients at high risk for restenosis”

94.70% (120 pts)
85.60% (prelim 70 pts)
Reflow study: clinical outcome
Reflow study: safety profile (full cohort)

Primary Safety Endpoint (120 pts)

<table>
<thead>
<tr>
<th>Event</th>
<th>30 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device or procedure related death (N)</td>
<td>0</td>
</tr>
<tr>
<td>CD-TLR (N)</td>
<td>1</td>
</tr>
<tr>
<td>Target Limb Amputation (N)</td>
<td>0</td>
</tr>
</tbody>
</table>

MAEs (N=120 pts)

<table>
<thead>
<tr>
<th>Event</th>
<th>180d</th>
<th>210d</th>
<th>365d</th>
<th>395d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death (N)</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CD-TLR (N)</td>
<td>11</td>
<td>12</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>Target Limb Major Amputation (N)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Reflow study in perspective...lesions >20cm

12M Primary Patency (%)

12M Freedom from TLR (%)

24M Primary Patency (%)

24M Freedom from TLR (%)

Preliminary cohort 70/120

BMS: Durability 200 study

DES: ZILVERPASS Zilver PTX results

Bypass ZILVERPASS results

DCB: REFLOW results
Reflow study in summary

• Safety issues with some DCB’s created official authority statements, saying that all PTX-based technology needs to be reserved for patients at high risk for restenosis & reintervention

• Newer generation DCB’s, like the Legflow, with stable amorphous SAFEPAX coating, are developed to optimize drug uptake in “hostile environments”

• The Reflow study demonstrates in a complex lesion population (mean lesion length 22cm) good outcomes: full cohort 1 year patency of 71% and freedom from TLR of 80%.

• In a preliminary cohort of 70 patients 24 month data are available: patency of 66% and freedom from TLR of 72%

• If we benchmark with other treatment strategies like BMS, DES and (prosthetic) bypass surgery in these complex lesions @high risk, we can conclude these data are remarkable
High risk of restenosis patients’ treatment: Update in the REFLOW trial