The role of CT and MRI imaging for planning venous procedures

Nils Kucher
Disclosure

Speaker name:
Nils Kucher: no conflict of interest for this presentation

I have the following potential conflicts of interest to report:

X Consulting BTG, Boston, Optimed, BARD

☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☐ I do not have any potential conflict of interest
Topics

• CT Venography; MR Venography

• Indications of CTV and MRV
• Advantages of CTV and MRV
• Type and techniques
• Duplex
• Examples
Indications for CTV/ MRV prior to intervention

• PTS involving IVC or iliofemoral veins
• Pelvic congestion syndrome, varicocele, or nutcracker syndrome
• Non-thrombotic compression of IVC or iliac veins
• Congenital venous abnormalities
• Vascular malformations
• Acute iliofemoral DVT only in exceptional cases
Imaging findings to suggest acute DVT

• Swollen vein - larger than contralateral side
• Low attenuation center
• Few collaterals
• Stranding of the perivenous soft tissue – suggestive of oedema
• High attenuation rim, due to contrast in the vasa vasorum and vessel wall inflammation
Do we need CTV or MRV for acute DVT prior to intervention?

- In most patients with acute iliofemoral DVT, cross-sectional imaging is not needed prior to intervention.
- Scenarios where imaging is helpful:
 - Cancer-associated DVT
 - Bilateral DVT involving IVC (atresia?)
 - Lymphocele (no stents)
 - Mechanisms of venous pathology other than anatomical compression
Duplex is key for acute iliofemoral DVT and PTS prior to intervention

• Only reliable imaging modality for differentiating ascending from descending iliofemoral DVT (popliteal vein patent?)
• Indirect CTV does not show distal thrombus extent
• Only reliable imaging modality for identifying important leg inflow veins
• Only reliable imaging modality with hemodynamic information
Massive DVT of IVC and bilateral iliofemoral veins
DVT ≠ DVT
Mixing up different diseases in RCTs

Ascending femoropopliteal DVT

Descending iliofemoral DVT

Inflow unlikely to be improved by CDT

Inflow almost always improved by CDT & stent
Imaging findings suggesting Chronic DVT

- Small vein compared to contralateral side
- Multiple deep or superficial collateral veins
- Direct visualisation of a thrombus with irregular margins
- Partial DVT recanalisation may result in heterogenous lumen and endoluminal stranding
- Endoluminal calcification
- Eccentrically located thrombus, adherent to the vein wall
- Normal perivenous fat, no stranding
- Thick walled, poorly enhancing, retracted veins
<table>
<thead>
<tr>
<th></th>
<th>CTV</th>
<th>MRV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>2 mins</td>
<td>30 mins</td>
</tr>
<tr>
<td>Radiation dose</td>
<td>7-12 mSv</td>
<td>zero</td>
</tr>
<tr>
<td>Contrast</td>
<td>Always, iodinated</td>
<td>Preferred, Gadolinium</td>
</tr>
<tr>
<td>Renal failure</td>
<td>Depends on eGFR</td>
<td>NSF 0.2%</td>
</tr>
<tr>
<td>General applicability from a technical point of view</td>
<td>Easy</td>
<td>More challenging</td>
</tr>
<tr>
<td>Post stenting</td>
<td>Can see thrombus + flow</td>
<td>Significant signal drop-out</td>
</tr>
<tr>
<td>Ability to combine with Pulmonary Art imaging</td>
<td>CTPA +CTV easy</td>
<td>MR PE protocol not recommended from guidelines</td>
</tr>
</tbody>
</table>
Advantages of CTV over MRV

- Readily available in most institutions even in acute patients
- Can be used in patients with claustrophobia
- Technically easy to perform
- Short acquisition time
- Cheaper
- Good image quality in the majority of patients
- Less artifacts in patients with increased bowel movements
- Better image quality of suprarenal IVC (single breath-hold image acquisition)
- Less often underestimation of PTS severity
- Can be used in patients with joint implants, pacemakers defibrillators (less artifacts then MRV)
- Can be used in patients with venous stents and IVC filters (less artifacts then MRV)
- Can be combined with PE protocol (not necessary in most cases)
CT venography in an obese patient after reconstruction of IVC and relapse of symptoms
Advantages of MRV over CTV

• No radiation
• Contrast free techniques available to image deep veins
• Good quality images
 • If dedicated MR protocols are used
 • If experienced MR radiologists are involved
 • If patient compliance is good
• Better image quality of leg veins and paravascular tissue
• Better image quality of collateral veins
• Better image quality of intravascular changes in PTS patients
• Better image quality to differentiate vein atresia from agenesis
MR venography of a patient with severe post-thrombotic syndrome and extended disease involving the common femoral vein
Flow-Dependent MRV

- Long acquisition times and flow artifacts
 - Gradient-recalled echo (GRE)
 - Time-of-flight MRV
Flow-Independent MRV

- Short acquisition time and less artifacts
- Balanced steady-state free precession MRV
Gadolinium-enhanced MRV

• Short acquisition time
• Better vascular information compared to flow dependent techniques
• Risk of nephrogenic systemic fibrosis (NSF) 0.02%
• Should not be used in patients with severe renal dysfunction
Cross-sectional imaging for May Thurner and atypical iliac vein compression

- CTV and MRV are sensitive but not specific for the diagnosis of May Thurner
- Both false positive false negatives
- Webs and spurs may be missed
- A distance >5 mm between right common iliac artery and spine does not rule out May Thurner
Cross-sectional imaging for May Thurner and atypical iliac vein compression

Duplex May Thurner region:
Cross-sectional imaging for May Thurner and atypical iliac vein compression
What does CTPA add to CTV:

- In patients with symptomatic ilio-femoral DVT the percentage of patients with a pulmonary embolus is 67%
- Guidelines do not suggest combination of CTV with CTPA routinely
- We only use the combination if both DVT and PE are clinically severe
Direct vs Indirect CTV

- Direct means cannulation of a vessel on the side of the pathology e.g. dorsal vein foot, popliteal etc.
 - Invasive but provides detailed anatomy
 - Sometimes deep veins get lost in a blizzard of superficial information
- Indirect - peripheral IV injection
 - Quicker, easier to standardise, less “impressive” images - they don’t look like CT Angiograms one is familiar with for EVAR etc.
Direct CTV

• Needles in both feet- catheterised in the CT scanner
• Either 2 pumps or two hand injections
• Becomes more difficult with swollen limbs

• All following direct CTV images courtesy of Dr. Jean Marc Pernes, Paris, France
Conclusion

- Both CTV and MRV can be used in the majority of patients with deep venous disease prior to intervention
- Best indication is PTS involving IVC or iliac veins
 - To image extent of venous involvement
 - To diagnose mechanism of disease (compression points, atresia, cancer, etc.)
- Both techniques have advantages and disadvantages
- Use of MRV may increase if better availability and protocols
- Direct CTV not really necessary but may be used for selected cases (e.g., lower extremity PTS or vascular malformations)
The role of CT and MRI imaging for planning venous procedures

Nils Kucher