24-month results of Ulysse registry: Ultrasound plasty to improve plain percutaneous angioplasty outcomes

Del Giudice C¹, Gandini R²

1) Vascular and Oncological Interventional Radiology, Hôpital Européen George Pompidou, Paris, France
2) Interventional Radiology, Policlinico Tor Vergata, Rome, Italy
Disclosure

Speaker name:
Costantino Del Giudice

I have the following potential conflicts of interest to report:

- □ Consulting
- □ Employment in industry
- □ Stockholder of a healthcare company
- □ Owner of a healthcare company
- □ Other(s)

☒ I do not have any potential conflict of interest
Calcific lesions are a big challenge for interventionist higher % of calcium - higher risk of complication

Fitzgeraland et al. in a study on 41 patients evaluated % of calcium in the plaque during coronary and peripheral angioplasty with IVUS

31 patients (76%) had IVUS evidence of significant dissection or plaque fracture immediately after balloon dilation.

In 87% of these cases, the dissections were adjacent to the calcific portion of the vessel wall
Ultrasound plaque-plasty could be an option to treat calcific lesions

Previous experience by Siegel et al.1,2 demonstrated in vitro and in vivo the efficacy of ultrasound energy to treat calcific chronically occluded vascular lesions.

Action related to:
- the longitudinal and transverse rapid (20,000 cycles/sec) movement of the probe impacting on the rigid, noncompliant, atherosclerotic portion of the vessel.
- to cavitation or the generation of vapor-filled voids (bubbles) in tissues, fluids, or cells.

1) Siegel et al. Circulation 1988;78:1443-1448
2) Siegel et al. Circulation.1994;89:1587-1592.)
Between 10/1 - 11/30 2017 24 patients with CLI were enrolled and treated for BTK lesions with US-plasty using the KAPANI catheter associated to PTA

• Primary Objective - SAFETY
 - Freedom from MACE through 30 days: Death, Stroke, MI
 - Recurrence of CLI, Amputations, Acute Occlusion, Surgical Revascularizations

• Secondary Objective - PROCEDURAL SUCCESS
 - Angiographic Re-Stenosis at 6 month
 - TLR at 6 month
Methods and materials

- Vessel
- Longitudinal Waves
- Ultrasound Catheter
- ULTRASOUND Exposure 15sec/cm

Calcific Plaque
- Guidewire
- Radiopaque Tip

PTA
- Ballon
- Vessel
Results

Baseline Characteristics (n=24)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>78.3 ±5.4</td>
</tr>
<tr>
<td>Men</td>
<td>15/24 (66)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>18/22 (75)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>15/24 (63)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>20/24 (83)</td>
</tr>
<tr>
<td>Smoker</td>
<td>18/22 (75)</td>
</tr>
<tr>
<td>Coronary disease</td>
<td>10/24 (41)</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>9/24 (38)</td>
</tr>
<tr>
<td>Rutherford class</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17/24 (71)</td>
</tr>
<tr>
<td>6</td>
<td>7/24 (29)</td>
</tr>
</tbody>
</table>

Lesions Characteristics (n=37)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion length, mm</td>
<td>125.2±35.2</td>
</tr>
<tr>
<td>PARC calcification score</td>
<td></td>
</tr>
<tr>
<td>moderate</td>
<td>15/37 (41)</td>
</tr>
<tr>
<td>severe</td>
<td>22/37 (59)</td>
</tr>
<tr>
<td>Stenosis (%)</td>
<td>91.4±12.0</td>
</tr>
<tr>
<td>CTO</td>
<td>9/35 (26)</td>
</tr>
<tr>
<td>Lumen diameter</td>
<td>0.2±0.4</td>
</tr>
</tbody>
</table>
Results

Pre

Post

6 M FU
Results

Procedural, Angiographic, and Clinical Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumen diameter post PTA</td>
<td>2.4 ± 0.5</td>
</tr>
<tr>
<td>Residual stenosis</td>
<td>5.4 ± 0.7</td>
</tr>
<tr>
<td>Periprocedural complications</td>
<td>0</td>
</tr>
<tr>
<td>6 M FU Primary patency</td>
<td>97.3%</td>
</tr>
<tr>
<td>6M FU CD-TLR</td>
<td>0</td>
</tr>
<tr>
<td>6 M FU MAE</td>
<td>0</td>
</tr>
</tbody>
</table>
Results

Mortality at 24 M FU: 2
CD-TLR at 24 M FU: 0
MAE at 24 M FU:
 Stroke: 0
 Myocardial infarction: 0
 Hospitalization: 1
 Major Amputation: 0
 Need of revascularization: 1
 CLI recurrence: 1

Freedom from restenosis

Lesion at risk:
- 1 M: 37
- 6 M: 34
- 12 M: 33
- 18 M: 33
- 24 M: 31
Conclusions

- Low-frequency, high-intensity ultrasound energy delivery followed by PTA is a safe approach to treat infra-popliteal atherosclerotic lesions.
- It can modify plaque morphology and may improve PTA outcomes.
- Limitations:
 - Small sample sizes
 - Retrospective
 - Plaque evaluation morphology
24-month results of Ulysse registry: Ultrasound plasty to improve plain percutaneous angioplasty outcomes

Del Giudice C¹, Gandini R²

1) Vascular and Oncological Interventional Radiology, Hôpital Européen George Pompidou, Paris, France
2) Interventional Radiology, Policlinico Tor Vergata, Rome, Italy